Title: Deep Relative Tracking
Authors: Gao, JY; Zhang, TZ; Yang, XS; Xu, CS
Author Full Names: Gao, Junyu; Zhang, Tianzhu; Yang, Xiaoshan; Xu, Changsheng
Source: IEEE TRANSACTIONS ON IMAGE PROCESSING, 26 (4):1845-1858; 10.1109/TIP.2017.2656628 APR 2017
Language: English
Abstract: Most existing tracking methods are direct trackers, which directly exploit foreground or/and background information for object appearance modeling and decide whether an image patch is target object or not. As a result, these trackers cannot perform well when target appearance changes heavily and becomes different from its model. To deal with this issue, we propose a novel relative tracker, which can effectively exploit the relative relationship among image patches from both foreground and background for object appearance modeling. Different from direct trackers, the proposed relative tracker is robust to localize target object by use of the best image patch with the highest relative score to the target appearance model. To model relative relationship among large-scale image patch pairs, we propose a novel and effective deep relative learning algorithm through the convolutional neural network. We test the proposed approach on challenging sequences involving heavy occlusion, drastic illumination changes, and large pose variations. Experimental results show that our method consistently outperforms the state-of-theart trackers due to the powerful capacity of the proposed deep relative model.
ISSN: 1057-7149
eISSN: 1941-0042
IDS Number: ER7FQ
Unique ID: WOS:000398976000005